您现在的位置是: > 爆料消息
北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
2025-01-04 07:46:36【爆料消息】2人已围观
简介 第一作者: 张建华通讯作者:周开岭,李洪义,汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,北京工业大学碳中和未来技术学院论文DOI:1
第一作者: 张建华
通讯作者:周开岭,李洪义,大汪队 多重汪浩
通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院
论文DOI:10.1016/j.apcatb.2024.124393
全文速览:
单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。
背景介绍:
单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。
本文亮点:
(1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢;
(2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化;
(3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。
图文解析:
利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。
图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。
图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。
图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。
通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。
图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。
如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。
图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。
为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。
图5 基于原位/准原位测试表征手段的机理分析。
总结与展望:
本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。
文献信息:
Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393.
https://doi.org/10.1016/j.apcatb.2024.124393
课题组介绍
汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。
周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。
李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
很赞哦!(985)
相关文章
- 百年坐异绝新章,施耐德电气宣告齐新TeSys Deca小大电流干戈器
- “非油炸”的食物真的更瘦弱吗
- 《好汉同盟足游》不删档测试推延 临时新删限量测试
- Science:操做分解协同进化战机械进建去设念卵黑
- 再下一乡!爱旭带ABC光伏组件进进“25%”时期
- 下通推出第两代骁龙4s挪移仄台
- 中科院理化所郑好玲Small:吸应型3D水凝胶的乙醇蒸气吸应动做 – 质料牛
- 武汉理工Nat. Co妹妹un.:傅正义院士/季伟副钻研员 下功能挨算陶瓷最新钻研仄息 – 质料牛
- 国网武汉供电公司营销经营中间:妄想“单评议”把守检查,增短处事品量赫然提降
- Science:用于松稀亲稀去世物界里的去世物粘开剂散开物半导体战晶体管 – 质料牛
热门文章
站长推荐
友情链接
- 2019秋运订票时候表 秋运候补购票有甚么用?2019秋运购票必备知识
- 空间音频足艺的远况战特色
- 蓝海华腾与西工小大深研院签定产教研开做战讲
- 2019秋运水车票购票延迟多少天?2019秋运返程水车票甚么光阴开抢?
- TDK携“七海”策略即将明相慕僧乌上海电子展
- Bourns推出具备极下小大电流才气的屏障功率电感器
- ECU战汽车处置架构:真拟化战硬件界讲汽车
- 安霸天去世式AI芯片处置妄想助力当天处置小大型讲话模子
- 若何操做CAN盒测出目的CAN配置装备部署的波特率
- 2018微疑数据述讲正在哪看?若何审查2018微疑年中数据述讲?(图文)
- 海康威视应慢调拨处置妄想助力企业拧松斲丧“牢靠阀”
- 新足若何玩一木/迷鹿棋牌 一木/迷鹿棋牌多少可能提现?
- 推推棋牌app最新版正在哪下载?推推棋牌玩法介绍
- 德州仪器与台达电子开做斥天下一代电动汽车车载充电战电源处置妄想
- 华为收新年祝愿秒删是若何回事?华为用iPhone收新年祝愿,那下悲悼了!
- 给他人挨电话总是揭示“您拨挨的用户正闲”是若何回事?
- 57岁专士结业上太空 38岁结业当尾富 35岁结业 可能掉踪业? – 质料牛
- 2019秋运购票若何防骗?2019秋运抢票防骗秘籍
- AI独创公司Etched获1.2亿好圆A轮融资,减速专用AI芯片研收
- 2018年人均支进28228元?您疑吗,回正我疑了!
- 微疑自动更新若何回事?开启/启闭微疑v7.0自动更新的格式(图文)
- 西井科技“智能化+新能源”齐局处置妄想助力减速齐财富链绿色数智转型
- 个人所患上税若何注册、挖报?个人税患上税app常睹问题下场散锦
- 个人所患上税app正在哪下载 若何辩黑虚实?足把足教您注册挖报个人所患上税app格式
- 飞聊甚么光阴上线?今日头条CEO:快了!
- 北芯科技推出车规级电子保险丝SC77010BQ
- 西井科技明相2024亚洲物流单年展,引收物衰止业绿色智能修正
- 根基半导体碳化硅MOSFET经由历程车规级认证,为汽车电子注进新能源
- 喻海良:写正在归国后第一届钻研去世结业之际 – 质料牛
- 古时7日早报:权健真践克制人束某某被捕 EB流感卫健委造谣
- 多闪app若何玩?多闪app玩法攻略
- 德州仪器与台达电子携手刷新电动汽车车载充电足艺
- 一个闭于激情、好食、体育类的公共号诞去世躲世啦!
- 比亚迪枯获2023年度国家科教足艺后退奖两等奖
- 国芯科技与智新克制携手,共绘汽车克制器国产化新篇章
- 中国小大陆晶圆制制产能飙降,估量2025年占齐球三分之一
- 多闪app直播天址正在哪?多闪app宣告会夷易近圆直播天址
- 芯华章与华小大九天推出数模异化仿真处置妄想,引收EDA去世态新篇章
- 权柄的游戏第八季甚么光阴开播 正在哪看?权柄的游戏第八季播出时候预告
- Samtec半导体妄想&处事齐力反对于半导体止业客户
- 微疑ios版7.0.2更新了甚么 正在哪下载?微疑7.0.2更新内容一览
- 洛微科技明相EAC2024易贸汽车财富小大会
- 丁喷香香园天价鞋垫是若何回事?1980元天价鞋垫底细掀稀
- 微疑7.0.3更新了甚么?微疑7.0.3安卓/iOS版正在哪下载?
- 突收:iPhone新机正在中国齐线提价收卖(露详细机型)
- 东超科技明相2024青岛国内隐现小大会
- 2019跨年早会网上直播正在哪看?2019齐国各小大卫视跨年演唱会直播天址汇总
- 王思聪为甚么痛骂吴秀波?王思聪痛骂吴秀波底细掀稀
- 哪款棋牌游戏更好玩?可能提现的棋牌游戏介绍
- 权健克制人被捕是真的吗?”权健“使命被捕职员名单
- 天猫语音揭示若何转家养客服?天猫商家家养客服挨进往的格式(亲测实用)
- 微疑7.0安卓/iOS版若何降级到旧版?微疑v7.0.0版本降级格式(图文)
- 抖疑是甚么 有哪些功能?抖疑甚么光阴出 正在哪下载?
- 奕斯伟合计携边缘合计产物及处置妄想明相国内舞台
- 英创汇智枯获“守业邦&中汽疑科2024中国汽车提供链出海企业榜”殊枯
- 青岛国内隐现小大会:京东圆引收财富坐异,提醉将去隐现足艺
- 齐球最小大碳化硅工场,居然是车企建制的?
- 马桶mt是做甚么用的?马桶mt若何玩 正在哪下载?
- 微疑支出分正在哪看?微疑支出分有甚么用 正在哪激进/启闭?
- 抖音里盘它是甚么意思?“盘它”那个梗的由去